
C++ Toolkit Book Applications

20-1

20. Applications
Created: April 1, 2003
Updated: October 10, 2003

Overview
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
Most of the applications discussed in this chapter are built on a regular basis, at least once a day from the
latest sources, and if you are in NCBI, then you can find the latest version in directory: $NCBI/c++/Release/
bin/ (or $NCBI/c++/Debug/bin/).

Chapter Outline
The following is an outline of the topics presented in this chapter:

• DATATOOL: Code Generation and Data Serialization Utility

• Invocation

• Main arguments

• Code generation arguments

• Definition file

• Common definitions

• Definitions which affect specific types

• INTEGER, REAL, BOOLEAN, NULL

• ENUMERATED

• OCTET STRING

• SEQUENCE OF, SET OF

C++ Toolkit Book Applications

20-2

• SEQUENCE, SET

• CHOICE

• Examples

• Generated code

• Normalized name

• ENUMERATED types

• SEQUENCE and SET code

• CHOICE code

• Other types code

• Class diagrams

• Specification analysis

• ASN.1 specification analysis

• DTD specification analysis

• Data types

• Data values

• Type strings

• Code generation

• Load-Balancing Service Mapping Daemon (LBSMD)

• Overview

• LBSMD in Details

• Example of Configuration File

• Load-Balancing Service Mapping Client (LBSMC)

• Server Penalizer

C++ Toolkit Book Applications

20-3

• Network Service Mapper/Dispatcher (DISPD.CGI)

• Overview

• Protocol Description

• Client Request to DISPD.CGI

• DISPD.CGI Response to Client

• Communication Schemes

• Server Launcher (NCBID.CGI)

• NCBI Firewall Daemon (FWDaemon)

• Using FD to connect from behind a "regular" firewall

• Using FD to connect from behind a "non-transparent" firewall

• Troubleshooting

• NCBI Genome Workbench

• Design Goals

• Design

DATATOOL: Code Generation and Data Serialization Utility
The datatool is located atc++/src/serial/datatool and can perform the following:

1. Generate C++ data storage classes based on ASN.1 or DTD specification to be used
with NCBI data serialization streams.

2. Convert ASN.1 specification into DTD and vice versa.

3. Convert data between ASN.1 and XML formats.

NOTE: Since ASN.1 and DTD are, in general, incompatible, the last two functions are supported
only partially.

The following additional topics are discussed in subsections:

http://asn1.elibel.tm.fr
http://www.w3.org/TR/REC-xml

C++ Toolkit Book Applications

20-4

• Invocation

• Definition file

• Generated code

• Class diagrams

Invocation
The following topics are discussed in this section:

• Main arguments

• Code generation arguments

Main arguments
See Table 1.

C++ Toolkit Book Applications

20-5

Table 1. Main Arguments

Argument Effect Comments

-h display the DATATOOL arguments Ignores other arguments
-m <file> ASN.1 or DTD module file(s) Required argument
-M <file> external module file(s) Is used for IMPORT type resolu-

tion
-i ignore unresolved types Is used for IMPORT type resolu-

tion
-f <file> write ASN.1 module file
-fx <file> write DTD module file "-fx m" writes modular DTD file
-fxs <file> write XML Schema file
-dn <string> DTD module name in XML header no extension
-v <file> read value in ASN.1 text format
-vx <file> read value in XML format
-F read value completely into memory
-p <file> write value in ASN.1 text format
-px <file> write value in XML format
-d <file> read value in ASN.1 binary format -t argument required
-t <type> binary value type see -d argument
-e <file> write value in ASN.1 binary format
-sxo no scope prefixes in XML output
-sxi no scope prefixes in XML input
-logfile <File_Out> File to which the program log should

be redirected
conffile <File_In> Program's configuration (registry)

data file
-version Print version number Ignores other arguments

Code generation arguments
See Table 2.

Table 2. Code Generation Arguments

Argument Effect Comments

-od <file> C++ code definition file see Definition file
-odi ignore absent code definition file
-odw issue a warning about absent code

definition file
-oA generate C++ files for all types only types from the main module

are used (see -m and -mx
arguments)

C++ Toolkit Book Applications

20-6

Argument Effect Comments

-ot <types> generate C++ files for listed types only types from the main module
are used (see -m and -mx
arguments)

-ox <types> exclude types from generation
-oX turn off recursive type generation
-of <file> write the list of generated C++ files
-oc <file> write combining C++ files
-on <string> default namespace
-opm <dir> directory for searching source

modules
-oph <dir> directory for generated *.hpp files
-opc <dir> directory for generated *.cpp files
-or <prefix> add prefix to generated file names
-orq use quoted syntax form for gener-

ated include files
-ors add source file dir to generated file

names
-orm add module name to generated file

names
-orA combine all -or* prefixes
-ocvs create ".cvsignore" files
-oR <dir> set -op* and -or* arguments for

NCBI directory tree
-lax_syntax allow non-standard ASN.1 syntax

accepted by asntool
-oex <export> add storage-class modifier to gen-

erated classes
can be overriden by [-]._export in

the definition file

Definition file
It is possible to tune up the C++ code generation by using a definition file, which could be speci-
fied in -od argument. Definition file utilizes the generic NCBI configuration format also used in
NCBI application's configuration (*.ini) files.

DATATOOL looks for code generation parameters in several sections of the file in the following

order:

1. [ModuleName.TypeName]

2. [TypeName]

3. [ModuleName]

4. [-]

C++ Toolkit Book Applications

20-7

Prefix of the parameter name in section is determined from the location of an element in the
data format specification (ASN.1 or DTD). For the root element prefix is empty. For an element of
type SET OF or SEQUENCE OF - add E. to prefix. For an element of type SET, SEQUENCE or
CHOICE - add the element name and dot (".") to prefix.

The following additional topics are discussed in this section:

• Common definitions

• Definitions which affect specific types

• Examples

Common definitions
Some definitions refer to the generated class as a whole: _file Defines the base file name for
the generated C++ class.

For example, the following definitions: [ModuleName.TypeName]_file=Another-
Name or [TypeName]_file=AnotherName would put the class CTypeName in
files with the base name AnotherName. While these two: [ModuleName]
_file=AnotherName or [-]_file=AnotherName put all the generated classes into a
single file with the base name AnotherName.

_dir Subdirectory in which the generated C++ files will be stored (in case _file not specified).
_class The name of the generated class (if _class=- is specified, then no code is generated for
this type).

For example, the following definitions: [ModuleName.TypeName]_class=Anoth-
erName or [TypeName]_class=AnotherName would cause the class generated
for the type TypeName to be named CAnotherName. While these two: [Modu-
leName]_class=AnotherName or [-]_class=AnotherName would result in all the
generated classes having the same name CAnotherName (which is probably
not what you want).

_namespace The namespace in which the generated class (or classes) will be placed. _par-
ent_class The name of the base class from which the generated C++ class is derived. _par-
ent_type Derive the generated C++ class from the class, which corresponds to the specified
type (in case _parent_class is not specified).

It is also possible to specify a storage-class modifier, which is required on Microsoft Windows
to export/import generated classes from/to a DLL. This setting affects all generated classes in a
module. Appropriate section of the definition file should look like this:

[-]_export = EXPORT_SPECIFIER

C++ Toolkit Book Applications

20-8

Since this modifier could also be specified in the command line, DATATOOL code generator

uses the following rules to choose the proper one:

1. If no -oex flag is given in the command line, then no modifier is added at all.

2. If -oex "" (that is, an empty modifier) is specified in the command line, then the modifier
from the definition file will be used.

3. The command line parameter in the form -oex FOOBAR will cause the generated classes
to have FOOBAR storage-class modifier, unless another one is specified in the definition
file. The modifier from the definition file always takes precedence.

Definitions which affect specific types
The following additional topics are discussed in this section:

• INTEGER, REAL, BOOLEAN, NULL

• ENUMERATED

• OCTET STRING

• SEQUENCE OF, SET OF

• SEQUENCE, SET

• CHOICE

INTEGER, REAL, BOOLEAN, NULL
_type C++ type: int, short, unsigned, long etc.

ENUMERATED
_type C++ type: int, short, unsigned, long etc. _prefix Prefix for enum values' names.
Default is "e".

OCTET STRING
_char Vector element type: char, unsigned char or signed char.

SEQUENCE OF, SET OF
_type STL container type: list, vector, set, or multiset.

SEQUENCE, SET
memberName._delay Mark the specified member for delayed reading.

CHOICE
_virtual_choice If non-empty, do not generate a special class for choice. Rather make the choice
class as parent one of all its variants. variantName._delay Mark the specified variant for delayed
reading.

Examples
If we have the following ASN.1 specification:

C++ Toolkit Book Applications

20-9

Date ::= CHOICE {
 str VisibleString,
 std Date-std
}
Date-std ::= SEQUENCE {
 year INTEGER,
 month INTEGER OPTIONAL
}
Dates ::= SEQUENCE OF Date
Int-fuzz ::= CHOICE {
 p-m INTEGER,
 range SEQUENCE {
 max INTEGER,
 min INTEGER
 },
 pct INTEGER,
 lim ENUMERATED {
 unk (0),
 gt (1),
 lt (2),
 tr (3),
 tl (4),
 circle (5),
 other (255)
 },
 alt SET OF INTEGER }

Then the following definitions:

[Date]str._type = string

would affect the generation of str member of the Date structure.

[Dates]E._pointer = true

would affect the generation of elements of the Dates container.

[Int-fuzz]range. min._type = long

would affect the generation of the min member of the range member of the Int-fuzz structure.

[Int-fuzz]alt.E._type = long

C++ Toolkit Book Applications

20-10

would affect the generation of elements of the alt member of the Int-fuzz structure.

Generated code
The following additional topics are discussed in this section:

• Normalized name

• ENUMERATED types

• SEQUENCE and SET code

• CHOICE code

• Other types code

Normalized name
Everywhere in generated code we use so-called NormalizedName which is produced from an
ASN.1 type name by replacing all minuses ("-") with underscores ("_") and making first letter capi-
tal.

ENUMERATED types
By default, for every ENUMERATED type DATATOOL will produce a C++ enum type with the

name ENormalizedName.

SEQUENCE and SET code

CHOICE code

Other types code

Class diagrams
The following topics are discussed in this section:

• Specification analysis

• Data types

• Data values

• Type strings

• Code generation

Specification analysis
The following topics are discussed in this section:

• ASN.1 specification analysis

• DTD specification analysis

C++ Toolkit Book Applications

20-11

ASN.1 specification analysis
See Figure 1.

Figure 1: ASN.1 specification analysis

DTD specification analysis
See Figure 2.

Figure 2: DTD specification analysis

Data types
See Figure 3.

C++ Toolkit Book Applications

20-12

Figure 3: Data types

Data values
See Figure 4.

C++ Toolkit Book Applications

20-13

Figure 4: Data values

Type strings
See Figure 5.

C++ Toolkit Book Applications

20-14

Figure 5: Type strings

Code generation
See Figure 6.

Figure 6: Code generation

C++ Toolkit Book Applications

20-15

Load-Balancing Service Mapping Daemon (LBSMD)
Note: Due to security issues, not all links in the public version of this file could be accessible by
outside NCBI users. Unrestricted version of this document is available to inside NCBI users at:
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/tools/dispatcher/LBSMD.html.

The following additional topics are discussed in this section:

• Overview

• LBSMD in Details

• Example of Configuration File

• Load-Balancing Service Mapping Client (LBSMC)

• Server Penalizer

Overview
In general, LBSMD should be run at NCBI site on every host that carries either public or private

servers implementing NCBI service(s) (see however discussion about static servers). The ser-
vices include CGI programs or standalone servers to access NCBI data. Each service has a
name assigned to it, TaxServer for instance. The name uniquely identifies the service, and -

most importantly - the protocol used for data exchange, i.e. any client connecting to service
TaxServer knows how to communicate with that service, whereas the service can be imple-

mented in various ways on hosts across NCBI. That is, the service could be implemented as a
standalone server on a host X, and as a CGI program on the same or another host Y. (Note how-
ever, that on a certain host there should not be more than one server of the same type for the
same service.) Moreover, the same server can implement several services, that is services with
different names. For example, one service (like Entrez2) can accept binary data only, and

another one (say Entrez2Text) can accept data only in text format. For the server, the distinc-

tion between those two could be in this case made by using a content type specifier.
The goal of LBSMD is to maintain a table of all services available at NCBI at the moment. In

addition, LBSMD keeps track of servers, which are found non-functional (dead servers), and it is

also responsible for propagating trouble reports, obtained back from the applications about their
experience with advertized servers (e.g. an advertized server is not technically dead, but gener-
ates sort of garbage when accessed). Further in this document the latter kind of feedback is
called a penalty.

The principle of load-balancing is simple: each server implementing a service is assigned a
(calculated) rate. The higher the rate the better the chance for that the server to be chosen. Note
that load-balancing is thus almost never deterministic (see however, discussion of negative local
bonus coefficient).

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/tools/dispatcher/LBSMD.html

C++ Toolkit Book Applications

20-16

It is not obvious that the load-balancing daemon does not calculate the rates of servers.
Instead, its primary goal is to collect all necessary information for that. The server calculates two
parameters, normal host status and so called BLAST host status (based on the instant load of the
system). These parameters are then used to calculate the rate of all (non-static) servers on that
host as shown in connect/ncbi_lbsm.c (which is a part of service mapping API, not LBSMD).

LBSMD in Details
LBSMD is configured by means of a configuration file (default name servrc.cfg), which is also

shared with NCBI CGI engine, NCBID.CGI. Each line in the file either defines a service, or is a

part of the host environment, or is an include directive, or, finally, is an empty line (the one
entirely blank or containing a comment only). Empty lines are all ignored in the file. Any single
configuration line can be split into several physical lines by inserting backslash symbols (\) before
the line breaks. A comment is introduced by the hash symbol (#).

A configuration line of the form

name=value

places itself in the host environment. The host environment can be accessed by clients when
they make the service name resolution. Initially, the host environment was designed to help
the client know about limitations/options, which the host has, and based on this additional
information the client can make a decision whether the server (despite that it is implementing
the service) is suitable for carrying out client's request. For example, the host environment
can give the client an idea about what are the databases available on the host. The host
environment is not interpreted or used in any way both by the daemon and by the load-
balancing algorithm, except for that name must be a valid identifier. The value may be

practically anything, even empty. It is left solely to the client to parse the environment and to
look for the information in interest. The host environment can be obtained from the service
iterator via call to SERV_GetNextInfoEx(), which is documented in service mapping API.
Note: White characters surrounding name are not preserved, but they are preserved in value,

i.e. when appear after the assignment sign.

A configuration line of the form

%include filename

causes the named file filename to be read at this point of the surrounding configuration file.

The daemon always assumes that relative file names (those which names do not start with
the slash character (/)) are looked for with the daemon startup directory as a base. This is
true for any level of nesting.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsm.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfoEx

C++ Toolkit Book Applications

20-17

Once started the daemon first assignes the top configuration file as /var/etc/lbsm/servrc.cfg,
then tries to read it. If the file is not found (or is not readable), the daemon looks for the
configuration file servrc.cfg in the directory, from which it has been started. If found, that file
is assigned as the top configuration file. This fallback machanism is not used when the
configuration file name is explicitly stated in the command line. When running, the daemon
periodically checks the top configuration file and all its descendants and reloads (discards)
their contents if some of the files have been either updated, (re-)moved, or added.

A service is defined by a line of the form

service_name [check_time] server_descriptor [| launcher_info]

• service_name names the service, for instance TaxServer.

• [check_time] is an optional parameter (if omitted, the surrounding square brackets

must go, too), which specifies the number of seconds for periodic checkups. For
example, [120] means to check the server once every 2 minutes. Note the square
brackets - they are required. Checkups can only be done for servers running locally,
that is specifying a check timeout for any server located outside the local machine
causes a warning printed and the timeout ignored.

• server_descriptor specifies address of the server and supplies additional

information, which is described in details later in this document. An example of the
server_descriptor:

STANDALONE somehost:1234 R=3000 L=yes S=yes B=-20

• launcher_info is basically a command line preceded by a pipe symbol (|),

delimiting from server_descriptor. It is only required for servers of typeNCBID,

which are configured on the local host.

Server_descriptor, also detailed in connect/ncbi_server_info.h, consists of the following

fields: server_type [host][:port] [arguments] [flags] where:

• server_type is one of the following keywords (see also here):

• NCBID for servers launched by ncbid.cgi;

• STANDALONE for standalone servers listening on dedicated ports;

• HTTP_GET for servers, which are the CGI programs accepting only GET
request method;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h

C++ Toolkit Book Applications

20-18

• HTTP_POST for servers, which are the CGI programs accepting only POST
request method;

• HTTP_POST for servers, which are the CGI programs accepting both of either
GET or POST request methods;

• DNS for introduction of a name (fake service), which can be later used in load-
balancing domain name resolution;

• NAMEHOLD for declaration of service names that cannot be defined in any
other configuration files except for the current configuration file. Note:
FIREWALL server specification may not be used in configuration file (i.e. may
neither be declared as services nor as service name holders).

• Both host and port parameters are optional. Defaults are local host and port 80

except for STANDALONE and DNS servers, which do not have a default port value.
If hostis specified (by either of the following: keyword localhost, localhost IP address

127.0.0.1, real host name or IP address) then the described server is not a subject for
variable load-balancing, but is a so-called static server. Such a server always has a
constant rate, independent of any host load.

• arguments are required for HTTP* servers, and must specify local part of URL of the

CGI program and optionally parameters, like: /somepath/somecgi.cgi?
param1¶m2=value2¶m3=value3If no parameters are to be supplied then

the question mark (?) must be omitted, too. For NCBID servers, arguments are

parameters to pass to the server and are formed as arguments for CGI programs, i.e.
param1¶m2¶m3=value As a special rule, '' (two single quotes) may be

used to denote an empty argument for NCBID server. STANDALONE and DNS
servers do not take any arguments.

• flags can come in no specific order (but no more than one instance of a flag is

allowed), and essentially are the optional modifiers of values used by default. The
following flags are recognized:

• load calculation keyword:

• Blast to use special algorithm for rate calculation acceptable for BLAST
applications. The algorithm uses instant values of the host load, and
thus is less conservative and more reactive than the ordinary one;

• Regular to use an ordinary rate calculation (default, and the only load
calculation option allowed forstatic servers).

http://www.ncbi.nlm.nih.gov/BLAST

C++ Toolkit Book Applications

20-19

• base rate:

• R=value sets base server reachability rate (as a floating point number),
default is 1000. Any negative value makes the server unreachable, and
a value of 0 uses the default. The maximal allowed base rate is 100000.

• locality markers:

• L={yes|no} sets (if yes) the server to be local only. Default is no. Service
mapping API returns local only servers in the case of mapping with the
use of LBSMD running on the same - local - host (direct mapping), or if

the dispatching (indirect mapping) occurs within the NCBI Intranet.
Otherwise, if service mapping occurs using non-local network (certainly
indirectly, via exchange withdispd.cgi) then local only servers are not

seen.

• P={yes|no} sets (if yes) the server to be private. Default is no. Private
servers are not seen by the outside users (exactly like local servers), but
in addition these servers are not seen from the NCBI Intranet if
requested from a host, which is different from one where the private
server runs. This flag cannot be used for DNS servers.

Note: If necessary, both L and P markers can be combined in a particular
service definition.

• stateful server:

• S={yes|no} sets (if yes) that the server can only accept dedicated
connections, and is not capable of doing stateless (HTTP-like) data
exchange. Such a server can only be accessed by creating a stream
connection to it, and the entire data transfer is to happen while the
connection is alive. Default is no. This flag cannot be specified for
HTTP* servers, and is silently ignored for DNS servers. Note: Due to
mutual incompatibility, Web-browsers cannot directly connect to stateful
servers of any type.

• content type specifier:

• C=type/subtype specifies what is the data type that the server expects.
This content type is to be used by a client, which wants to connect to the
server. There is no default value for this flag, and the flag cannot be
used for DNS servers.

C++ Toolkit Book Applications

20-20

• local bonus coefficient:

• B=value. The interpretation of this flag depends on the sign of value.
When positive, value specifies a multiplier, which applies to the server
rate when the server is locally run. When zero (default), the slight default
rate increase takes effect for locally run servers. When value is negative,
the locally run server overrides those even having higher rates and
preceding the local one, but only if the local server has a rate, which is
not in the percentile (expressed by the absolute value) of average
remaining rate of all other servers, implementing the service. For
example, a server on a local host Z configured with B=-5 (and currently
having rate of 100) will be chosen by the local load-balancer even if
there were servers on hosts X and Y having rates 1000 and 2000,
respectively, because 100 is more than 5% of (1000 + 2000)/2 = 1500,
which is 75. Note again that for this coefficient to play, both server and
mapping must be on the same host.

• backup quorum:

• Q={value|yes|no}. Server specifications having this flag set define so-
called backup configuration, and must have host distinct from the local
host. Also, this flag cannot apply to NAMEHOLD specifications. In a
simple case Q=yes defines a backup entry, which gets activated when
number of dynamic entries (which came from other hosts) for particular
service becomes less than the number of the service's backup lines
defined in the entire configuration (i.e. counting all files). The order in
which backup entries are then chosen is defined by their order of
appearance in configuration. In a more complex case, Q=value can be
provided with the value corresponding to the minimal requirement on the
number of active dynamic entries, regardless of the number of backup
entries in configuraiton. When this quorum is met, no backup entries are
being activated (or will be deactivated and put back pending). Note: If
several configuration lines for a partical service have Q=value flag then
the quorum is the minimal value among specified. Q=no or Q=0 defines
an active service entry (as if Q flag were not specified at all).

Server descriptors of type NAMEHOLD are special. As arguments they have only server

type keyword. Namehold specification tells to the daemon that service of this name and type
is not to be defined later in any configuration file except for the current. Also, if host is
specified then this protection only works for the service name on the particular host. Port
number is ignored (if specified). Note: it is recommended to always put a dummy port
number (like :0) in namehold specifications to avoid ambiguities with treating server type as a

C++ Toolkit Book Applications

20-21

host name. The followin example disables TestService of type DNS to be defined in all

other configuration files included later, and TestService2 to be defined as a NCBID service

on host foo:

TestService NAMEHOLD :0 DNS
TestService2 NAMEHOLD foo:0 NCBID

The main loop of the daemon comprises periodic checks of configuration file and reloads of
the configuration if necessary, checks and processings of incoming messages from load-
balancing daemons running on other hosts, generation and brodacast of the messages to other
hosts about the load of the system and configured services. Also, the daemon periodically checks
whether the configured servers are alive, trying to connect to them, and then to immediately dis-
connect, without sending/receiving any data. This way the daemon is only able to check if the
network port is working. Further server accessibility information could be sent back to the daemon
in the form of a penalty from applications that actually use the server.

The daemon can be configured by a dozen of switches, which modify certain parameters
from their default values. To see all command-line switches, switch -h may be used, or NCBI
Intranet users only can click here. Also, daemon reacts on HUP signal to reload its configuration,

and both INT and TERM signals to gracefully quit. Despite very high stability, usually the daemon

is forcedly started from crontab each every few minutes on all production hosts to ensure that the
daemon is always running. This technique is safe, because no more than one instance of the
daemon is permitted on a certain host, and any attempt to start more than one is rejected.

LBSMD can generate output to the logfile, which can be limited in size to prevent disk from

flooding with messages. NCBI Intranet users onlycan take a look at (no more than 100) recent
lines of the logfile on host ray. Signal USR1 can be used to toggle verbosity level between less

verbose (default) and more verbose (when every warning generated is stored) modes.
Logfile size can be controlled by -s switch. By default -s 0 is the active flag, which means to

create (if necessary) and to append messages to the logfile with no limitation on the file size
whatsoever. -s -1 instructs indefinite appending to the logfile, which has however to exist. Other-
wise, log messages are not stored. -s positive_number restricts to create (if necessary) and to
append to the logfile until the file reaches the specified size in kilobytes. After that, the message
logging is suspended, and subsequent messages are discarded. Note that the limiting file size is
only approximate, and sometimes the logfile can grow slightly bigger. The daemon keeps track of
logfiles and leaves the final logging message either when switching from one file to another in
case of the file has been moved or removed or when the file size has reached its limit.

Example of Configuration File
Below is an excerpt from sample configuration file, which declares some of the host environment,
advertizes one standalone stateful server, and one NCBID service, both implementing the same

service, and one local HTTP service.

http://yar.ncbi.nlm.nih.gov/Service/lbsmd.cgi
http://yar.ncbi.nlm.nih.gov/Service/lbsmd.cgi?log

C++ Toolkit Book Applications

20-22

#
This is a configuration file of new NCBI service dispatcher
#

This goes to host environment (rather practical)
db_list=a.db b.db c.db
And this does too (rather illustrative)
my_entry="some very important value as a quoted string"

Standalone server listening on port 9999
TestService STANDALONE :9999 S=yes R=2000

NCBID server (Note empty quotes to prevent treating of Regular as
an argument. Also note bar (|) followed by path and parameters of
the executable.)
TestService NCBID '' Regular |
 /home/webuser/TestService/a.out "parameter 1"

Local HTTP service w/o checks (note [0])
LocalService [0] HTTP /LocalService.cgi?param=somevalue L=yes

Static server - check it each 200 seconds
StaticService [200] STANDALONE localhost:8888

Static server from another host where LBSMD may even not be running
(no checks at all or just [0] allowed for non-local static servers)
ForeignService [0] STANDALONE foreignhost:7777 R=300

Backup entry for DNS service test_lb - will be activated if no dynamic
entry would be found in the table of services
test_lb DNS otherhost Q=yes

Hold service name PrivateService of type HTTP from being defined in
included configuration files
PrivateService NAMEHOLD :0 HTTP

Include another configuration file (Note that PrivateService of type HTTP
will be rejected in that file and all its descendants)
%include /home/someuser/servrc.cfg.someuser

Define PrivateService here as a real service
PrivateService HTTP /cgi-bin/privsrv.cgi?arg=val R=2000.0

end of configuration

NCBI Intranet users only can take a look at a real configuration file on the host ray by clicking
here.

http://yar.ncbi.nlm.nih.gov/Service/lbsmd.cgi?cfg

C++ Toolkit Book Applications

20-23

Load-Balancing Service Mapping Client (LBSMC)
This is a special program, which repeatedly dumps onto the screen a table representing current
contents of shared memory segment, where the daemon collects all information about hosts and
services. The client's output can be controlled by a number of switches, full list of which can be
obtained via switch -h alone, or NCBI Intranet users can click here. For example, to print only the
hosts currently running the daemon one can use the following command:

>./lbsmc -s none 0
08/23/01 11:36:35 ================== sampson ===================================
Hostname/IPaddr Task/CPU LoadAv LoadBl Status StatBl n1 n2 n3 n4 n5 q1 q2 q3
iblastd 4/2 2.01 2.00 220.26 0.00 0 0 0 0 0 10 10 0
muncher * 11/16 0.01 0.05 14414.42 15950.00 0 0 0 0 0 22 22 0
ray 29/6 2.71 3.14 75.39 2860.00 0 0 0 0 0 1 1 0
sampson 11/6 0.16 0.17 2173.91 5830.00 0 0 0 0 0 0 0 0
schroeder 60/8 0.45 0.00 285.72 8000.00 0 0 0 0 0 0 0 0
--
* Hosts: 5/5, Svcs: 0/12/0 | Heap: 8192, used: 1736/1776, free: 6416 *

08/23/01 11:36:35 LBSMD PID was detected as 9733

For NCBI Intranet users only the following live lists are available for browsing:

• Currently running hosts;

• Currently configured services and servers;

• Currently dead servers.

Some explanation to the client's output. The output usually contains 2 parts: first comes the
host table, followed by the service table. If -f switch was specified, then the host table is
prepended by raw heap printout, which shows the data exactly in the order they appear in the
shared memory. The output goes in either long or short format depending on whether -w was
specified on the command line (the switch requests the long (wide) output). Wide output occupies
about 130 columns, while the short (normal) output takes 80 - the standard terminal size. In cases
when the service name is more than the allowed number of characters to display, the trailing
character will be shown as '>'. When there is more information to display about host/service, a '+'
characters is set beside the host/service name (this additional information can be requested by
switch -i). When both '+' and '>' are to be shown, they are replaced with '*'. In the wide output
format, '#' shown in the service line tells that there is no host information available for the service
(like for static servers). '!' character in the service line denotes that the service was configured/
stored with an error (this character actually should never appear in the listings, and should be
reported whenever encountered). Wide output for hosts contain the time of bootup and startup. If
the startup time is preceded by a tilde '~', then the host was gone for a while and then came back,
while the client was running. A plus char '+' in the times is to show that the date belongs to the
past year(s).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsmc.c
http://yar.ncbi.nlm.nih.gov/Service/lbsmd.cgi?-h
http://yar.ncbi.nlm.nih.gov/Service/lbsmc.cgi?-s+none+-w
http://yar.ncbi.nlm.nih.gov/Service/lbsmc.cgi?-h+none+-w
http://yar.ncbi.nlm.nih.gov/Service/lbsmc.cgi?-h+none+-w+-d

C++ Toolkit Book Applications

20-24

Server Penalizer
There is a means for application to report problems of accessing a certain server back to the
load-balancing daemon, in the form of the penalty, a value in the range [0..100], showing in per-
cents how bad the server is. The value 0 means the server is completely okay, while 100 means
the server (is misbehaving and) should not be used at all. The penalty is not a constant value:
once set it starts to decrease in time first slowly, then faster and faster until reaches zero. This
way, if a server was penalized for some reason beyond its control but afterwards the reason has
gone, then the server becomes gradually available as its penalty (not being reset by applications
again in the absence of the offending reason) goes itself to zero.

Technically, the penalty is maintained by a daemon, which has the server configured. That is,
received by a certain host, which may be different from the one where the server was put into
configuration file, the penalty first migrates to that host, and then the daemon on that host
announces that the server was penalized. Note: Once the daemon is restarted, the penalty infor-
mation is lost.

Service mapping API has a call SERV_Penalize() declared in connect/ncbi_service.h, which
can be used to set the penalty for the last server obtained from the mapping iterator.

For script files (like ones used to start/stop servers) there is a dedicated utility program called
lbsm_penalize, which sets penalty from command line. Because of intervening the load-

balancing mechanism substantially this command should be used with extreme care.
lbsm_penalize is now a part of LBSM set of tools installed on all hosts that run LBSMD. As

explained above, penalizing means making a server less favorable for choosing by load-
balancing mechanism. Because of the fact that the full penalty of 100% makes a server unavail-
able for clients at all, at the time when the server is about to shut down (restart) it is wise to
increase the server penalty to the maximal value, thus excluding the server from the service
mapping. (Otherwise, the load-balancing daemon might not immediately notice that the server is
down and continue dispatching to that server.) Usually penalty takes at most 5 seconds to propa-
gate to all participating network hosts. That is, before an actual server shutdown the following
sequence of commands can be used:

> ~ncbiduse/Service/lbsm_penalize 'Servicename STANDALONE 100 host 120' >
sleep 5 >
shutdown the server

The effect of the above is to set the maximal penalty 100 for the service Servicename (of

type STANDALONE) running on host host for at least 120 seconds - note the last numeric

value. (After 120 seconds the normal behavior of the penalty occurs, i.e. automatical decreasing
in time if not reset again to a different value with optional hold time.) Default hold time equals 0. In
order for penalty to be realized by all hosts of the subnet, sleep 5 precedes the server shut-

down. Please note single quotes surrounding penalty specification: they are required in a com-
mand shell because lbsm_penalize takes only one argument, the entire penalty specification.

As soon as the server is down, LBSMD detects it in the matter of several seconds (if not

instructed otherwise via configuration file) and then never dispatches to the server until it is up. In
some circumstances the following command may come handy:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_Penalize
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsm_penalize.c

C++ Toolkit Book Applications

20-25

> ~ncbiduse/Service/lbsm_penalize 'Servicename STANDALONE 0 host'

it resets the penalty to 0 (no penalty) and is useful when, e.g. as for the previous example,
the server is restarted and ready in less than 120 seconds but the penalty is still held high by
LBSMD.

Network Service Mapper/Dispatcher (DISPD.CGI)
Note: Due to security issues, not all links in the public version of this file could be accessible by
outside NCBI users. Unrestricted version of this document is available to inside NCBI users at:
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/tools/dispatcher/DISPD.html.

The following addutional topics are discussed in this section:

• Overview

• Protocol Description

• Communication Schemes

• Server Launcher (NCBID.CGI)

Overview
DISPD.CGI is a CGI/1.0-compliant program, the purpose of which is to map requested service

name to an actual server location, when the client has no direct access to LBSMD. This mapping

is called dispatching. Optionally DISPD.CGI can also pass data between the client, requested

the mapping, and the server, which implements the service, and was found as a result of dis-
patching. This combined mode is called connection. The client may choose either of these modes
if there is no special requirement on data transfer (e.g. firewall connection). In some cases, how-
ever, the requested connection mode implicitly limits the request to be a dispatching-only request,
and actual data flow between the client and the server occurs separately at a later stage.

Protocol Description
Dispatching protocol is designed as an extension to HTTP/1.0 and is coded in the HTTP header
parts of the packets. The request (both dispatching and connection) is done by sending an HTTP-
packet to DISPD.CGI with a query line of the form:

dispd.cgi?service=<name>

which can be followed by parameters (if applicable) to be passed to the service. <name>
defines the name of the service to be used. The other parameters take form of one or more of the
following construct:

&<param>[=<value>]

where square brackets are used to denote an optional value part of the parameter.

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/tools/dispatcher/DISPD.html

C++ Toolkit Book Applications

20-26

In case of a connection request, the request body can contain data to be passed to the first
found server, connection to which is automatically initiated by DISPD.GCI after dispatching. On a

contrary, in case of a dispatching-only request the body is completely ignored, that is the connec-
tion is dropped after the header has been read and then the reply gets generated without con-
suming the body data and that may confuse an unprepared client.

Mapping of service name into server address is done via LBSM Daemon (LBSMD), which has

to run on the exactly same host where DISPD.CGI has started. DISPD.CGI never dispatches

non-local client to a server marked as local-only (by means of L=yes in configuration of LBSMD).

Otherwise, the result of dispatching is exactly what the client would get from service mapping API
if run locally. Explicitly specifying its capabilities, the client can narrow the server search; for
example, by choosing stateless servers only.

The following additional topics are discussed in this section:

• Client Request to DISPD.CGI

• DISPD.CGI Response to Client

Client Request to DISPD.CGI
In the client request to DISPD.CGI the following additional HTTP tags are recognized:

Accepted-Server-Types: <list> where <list> can include one or more of the

following keywords separated by spaces:

• NCBID

• STANDALONE

• HTTP

• HTTP_GET

• HTTP_POST

• FIREWALL which describe server types the client is capable to handle.
Default is any (when the tag is not present at all in the HTTP header), and
in case of connection request, the dispatcher will accomodate an actual
found server with the connection mode, which the client requested, by
relaying data appropriately, and in a way suitable for the server. Note:
FIREWALL indicates that the client has chosen a firewall way of commu-
nication. Note: Some server types can be ignored if not compatible with
current client mode.

C++ Toolkit Book Applications

20-27

Client-Mode: <client-mode> where <client-mode> can be one of the fol-

lowing:

• STATELESS_ONLY - specifies that the client is not capable of doing full-
duplex data exchange with the server in a session mode (e.g. in a dedi-
cated connection).

• STATEFUL_CAPABLE - should be used by the clients, which are capa-
ble of holding an open connection to a server. This keyword serves as a
hint to dispatcher to try to open a direct TCP channel between the client
and the server, thus reducing the network usage overhead.

Default (when the tag is not present at all) is STATELESS_ONLY in order to
support Web-browsers.

Dispatch-Mode: <dispatch-mode> where <dispatch-mode> can be one of

the following:

• INFORMATION_ONLY - specifies that the request is a dispatching
request, and no data and/or connection establishment with the server
required at this stage. That is, DISPD.CGI only returns a list of available

server specifications (if any), corresponding to requested service, and in
accordance with client mode and server acceptance.

• NO_INFORMATION - is used to disable sending the above mentioned
dispatching information back to the client. This keyword is reserved solely
for internal use by DISPD.CGI and should not be used by a side applica-

tion.

• STATEFUL_INCLUSIVE - informs DISPD.CGI that current request is a

connection request, and because it is going over HTTP, it is treated as
stateless, thus the dispatching would supply stateless servers only. This
keyword modifies the default behavior, and dispatching information sent
back along with server reply (resulting from data exchange) should
include stateful servers as well, so allowing the client to go to a dedicated
connection later. Note: This keyword is not yet in use by present imple-
mentation of service connector.

Default (in the absence of this tag) is connection request, and as it is going over
HTTP, it is automatically considered stateless. This is to support calls for NCBI
services from Web-browsers.

C++ Toolkit Book Applications

20-28

Skip-Info-<n>: <server-info> A number of <server-info> strings can be
passed to DISPD.CGI to ignore the servers from being potential mapping tar-

gets (in case the client knows the listed servers either do not work or are not
appropriate). Skip-Info tags are enumerated by numerical consequent suffices
(<n>), starting from 1. These tags are optional and should only be used if the

client believes that the certain servers do not match the search criteria, or other-
wise the client may end up with an unsuccessful mapping.

Client-Host: <host> This tag is used by DISPD.CGI internally to identify the

<host>, where the request comes from, in case of relaying involved. Although

DISPD.CGI effectively disregards this tag if the request originates from outside

NCBI, and thus it cannot be easily fooled by the address spoofing, inhouse
applications should not use this tag when connecting to DISPD.CGI because

the tag is trusted and considered within the NCBI Intranet.

DISPD.CGI Response to Client
In response to the client DISPD.CGI can produce the following HTTP tags:

Relay-Path: <path> the tag shows how the information was passed along by
DISPD.CGI and NCBID.CGI. This is essential for debugging purposes.

Server-Info-<n>: <server-info> the tag(s) (enumerated increasingly by suffix
<n>, starting from 1) give a list of servers, where the requested service is avail-

able. The list can have up to 5 entries. However, there is only one entry gener-
ated when the service was requested either in firewall mode or by a Web-
browser. For non-local client the returned server descriptors can include
FIREWALL server specifications. Despite preserving information about host,
port, type and other (but not all) parameters of the original servers, FIREWALL
descriptors are not specifications of real servers, but they are created on-the-fly
by DISPD.CGI to indicate that the connection point of the server cannot be oth-

erwise reached without the use ofeither firewalling or relaying.

Connection-Info: <host> <port> <ticket> the tag gets generated in a
response to a stateful-capable client and includes host (in a dotted notation) and
port number (decimal value) of the connection point where the server is listening
on (if either the server has specifically started or the firewall daemon has created
that connection point due to the client request). The ticket value (hexadecimal)
represents the 4-byte ticket that must be passed to the server as binary data in

C++ Toolkit Book Applications

20-29

the very beginning of the stream. If instead of host, port and ticket information
there is a keyword TRY_STATELESS, then for some reason (see Dispatcher-
Failures: tag below) the request failed, but may succeed if the client would switch
into stateless mode.

Dispatcher-Failures: <failures> the tag value lists all transient failures, which
dispatcher might have expirienced while processing request. Fatal error (if any)
always appears as the last failure in the list. In this case, the reply body would
contain a copy of the message, too. Note: Fatal dispatching failure is also indi-
cated by an unsuccessful HTTP completion code.

Communication Schemes
After making dispatching request and using the dispatching information returned, the client can
usually connect to the server on its own. Sometimes however, the client has to connect to
DISPD.CGI again in order to proceed with communication with the server. For DISPD.CGI this

would then be a connection request, which can go one of either 2 similar ways: relaying and fire-
walling.

• In relay mode DISPD.CGI passes data from the client to the server and back, playing the

role of a middleman. Data relaying occurs when, for instance, a Web-browser client wants
to communicate with a service governed by DISPD.CGI itself.

• In firewall mode DISPD.CGI only sends out the information about where the client has to

connect to in order to communicate with the server. This connection point and verifiable
ticket are specified in Connection-Info: tag in the reply header. Note: Firewalling is actually
pertaining only to stateful-capable clients and servers.

Firewall mode is selected by the presence of keyword FIREWALL in Accepted-Server-Types:
tag set by the client sitting behind a firewall, and not being able to connect to an arbitrary port.

These are scenarios of data flow between the client and the server depending on "stateness"
of the client:

• Stateless client

• Client is not using firewall mode:

A. the client has to connect to the server by its own, using dispatching informa-
tion obtained earlier, or

C++ Toolkit Book Applications

20-30

B. the client connects to DISPD.CGI in connection request (e.g. the case of

Web-browsers), and DISPD.CGI makes data relaying for the client to the

server.

• Client chooses to use firewall mode, then the only way to communicate with server
is to connect to DISPD.CGI (making connection request), and use DISPD.CGI as

a relay. Note: Even if the server is standalone (but lackingS=yes in configuration file
of LBSMD), then DISPD.CGI initiates a microsession to the server and wraps its

output into HTTP/1.0-compliant reply. Data from both HTTP and NCBID servers are

simply relayed one-to-one.

• Stateful-capable client

• Client not using firewall mode has to connect directly to the server, using dis-
patcher information obtained earlier (e.g. with the use of INFORMATION_ONLY in
Dispatch-Mode: tag).

• If firewall mode selected then the client has to expect Connection-Info: to come
back from DISPD.CGI pointing where to connect to the server. If TRY_STATE-
LESS comes out as a value of the former tag, then the client has to switch into
stateless mode (e.g. by setting STATELESS_ONLY in Client-Mode: tag) in order for
the request to succeed. Note: TRY_STATELESS could be induced by many rea-
sons, mainly that all servers for the service are stateless ones, or that firewall dae-
mon is not available on the host, where the client's request was received.

Note: Outlined scenarios show that no prior dispatching information is required for a stateless
client to have in order to make a connection request, as DISPD.CGI can always be used as a

data relay (this way Web-browsers can access NCBI services). But for stateful-capable client to
establish a dedicated connection that additional step of obtaining dispatching information must
precede the actual connection.

In order to support requests from Web-browsers, which are unaware of HTTP extensions
comprising dispatching protocol, DISPD.CGI considers incoming request that does not contain

input dispatching tags, as a connection request from a stateless-only client.
DISPD.CGI uses simple heuristics in analyzing HTTP header to determine whether the con-

nection request comes from a Web-browser, or from an application (a service connector, for
instance). In case of a Web-browser, the data path could be chosen more expensive but more
robust, including connection retries if required, while on the contrary with an application, the dis-
patcher could return an error and the retry is delegated to the application.

DISPD.CGI always preserves original HTTP tags User-Agent: and Client-Platform: when

doing both relaying and firewalling.

C++ Toolkit Book Applications

20-31

Server Launcher (NCBID.CGI)
There are servers of type NCBID, which are really programs that read requests from stdin and

write responses into stdout without having sort of a common protocol. Thus, HTTP/1.0 was cho-
sen as a framed protocol for wrapping both requests and replies, and NCBID.CGI utility CGI

program was created to pass the request from HTTP body to the server and to put reply from the
server into HTTP body and send back to the client. Also, NCBID.CGI is to provide a dedicated

connection between the server and the client, if the client supports the stateful way of communi-
cation. Formely NCBID.CGI was implemented as a separate CGI program, but recently it was

integrated into and became a part of DISPD.CGI (now NCBID.CGI is a symbolic link to DISPD.
CGI).

NCBID.CGI determines the requested service from the query string the same way DISPD.
CGI does so, i.e. by looking into the value of CGI parameter service. Executable file that has to

be run is then obtained by searching configuration file (shared with LBSMD, default name is

servrc.cfg): the path to the executable along with optional command-line parameters is specified
after the bar character ("|") in the line containing the service definition.

NCBID.CGI can work in either of 2 connection modes, stateless and stateful, as determined

by reading the following HTTP header tag: Connection-Mode: <mode> where <mode> is one of

the following:

• STATEFUL

• STATELESS

Default (when the tag is missing) is STATELESS to support calls from Web-browsers.
When DISPD.CGI relays data to NCBID.CGI this tag is set in accordance with current client

mode.
STATELESS mode is almost identical to a call of a conventional CGI program, except that in

HTTP header there could be tags pertaining to dispatching protocol, and resulting from data relay-
ing (if any) by DISPD.CGI.

In STATEFUL mode NCBID.CGI starts the program in a more tricky way, which is closer to

work in firewall mode for DISPD.CGI. Namely, NCBID.CGI loads the program with its stdin and

stdout bound to a port, which is made listening. That is the program becomes sort of an Internet
daemon (only exception that exactly one incoming connection is allowed). Then the client is sent
back an HTTP reply containing Connection-Info: tag. The client has to use port, host and ticket
from that tag in order to connect to the server by creating a dedicated TCP connection. Note:
NCBID.CGInever generates TRY_STATELESS keyword.

For the sake of backward compatibility, NCBID.CGI creates the following environment vari-

ables (in addition to CGI/1.0 environment variables created by the HTTP daemon when calling
NCBID.CGI) before starting the service executables: NI_CLIENT_IPADDR and

NI_CLIENT_PLATFORM. The former contains an IP address of the remote host (could be IP

C++ Toolkit Book Applications

20-32

address of the firewall daemon if NCBID.CGI was started as a result of firewalling. The latter

environment variable contains the client platform extracted from the HTTP tag Client-Platform: if
any provided by the client.

NCBI Firewall Daemon (FWDaemon)
So-called "NCBI Firewall Daemon" (FD) is essentially a network multiplexer listening at an adver-
tised network address.

FD works in a close cooperation with the NCBI network dispatcher, which informs FD on how
to connect to the "real" NCBI server, and then instructs the network client to connect to FD
(instead of the "real" NCBI server). Thus, FD serves as a middleman that just pumps the network
traffic from the network client to the NCBI server and back.

FD allows network client to establish a persistent TCP/IP connection to any of publicly adver-
tised NCBI services, provided that the client is allowed to make outgoing network connection to
any of the following FD addresses (on front-end NCBI machines):

130.14.22.31, port 5812
130.14.22.32, port 5811
130.14.29.112, ports 5860..5870

NOTE: One FD can simultaneously serve many client/server pairs.
The following additional topics are discussed in this section:

• Using FD to connect from behind a "regular" firewall

• Using FD to connect from behind a "non-transparent" firewall

• Troubleshooting

Using FD to connect from behind a "regular" firewall
If your network client is behind a regular firewall, then just ask your system administrator to open
the above addresses (only!) for outgoing connections, then set your client to "firewall" mode...
and that's it, now your network client can use NCBI network services in a usual way (as if there
were no firewall at all).

Using FD to connect from behind a "non-transparent" firewall
NOTE: If your firewall is "non-transparent" (it is extremely rare case), then your system adminis-
trator must "map" the corresponding ports on your firewall server to the advertised FD addresses
(shown above). In this case, you will have to specify the address of your firewall server in the
client configuration (CONN_PROXY_HOST).

The mapping on your non-transparent firewall server should look like this:

CONN_PROXY_HOST:5812 --> 130.14.22.31:5812
CONN_PROXY_HOST:5811 --> 130.14.22.32:5811
CONN_PROXY_HOST:5860..5870 --> 130.14.29.112:5860..5870

C++ Toolkit Book Applications

20-33

Please not that there is a port range that might not be presently used by any clients and
servers, but is reserved for future extensions. Nevertheless, we recommend that you have this
range configured on firewalls already now to allow the applications to function seamlessly in the
future.

Troubleshooting
You can test if the FD ports are accessible from your host by just running, for example:

telnet 130.14.22.31 5812

and entering a line of arbitrary text in the TELNET session. If everything is fine, your TELNET
session will look as follows (the line "test" is your input here):

> telnet 130.14.22.31 5812
Trying 130.14.22.31...
Connected to 130.14.22.31.
Escape character is '^]'.
test
NCBI Firewall Daemon: Invalid ticket. Connection closed.
See http://www.ncbi.nlm.nih.gov/cpp/network/firewall.html.
Connection closed by foreign host.

There is also an auxiliary UNIX shell script fwd_check.sh to check the accessibility of all of
the above FD addresses.

The following dynamic Web page checks whether the FD is running on all hosts mentioned
above.

NCBI Genome Workbench
NCBI Genome Workbench is an integrated sequence visualization and analysis platform. This
application runs on Windows, Unix and Macintosh OS X.

The following topics are discussed in this section:

• Design Goals

• Design

Design Goals
The primary goal of Genome Workbench is to provide a flexible platform for development of new
analytic and visualization techniques. To this end, the application must facilitate easy modification
and extension. In addition, we place a large emphasis on cross-platform development, and
Genome Workbench should function and appear identically on all supported platforms.

http://www.ncbi.nlm.nih.gov/cpp/network/firewall.html
http://www.ncbi.nlm.nih.gov/cpp/network/fwd_check.sh
http://www.ncbi.nlm.nih.gov/cpp/network/fwd_check.cgi

C++ Toolkit Book Applications

20-34

Design
The basic design of Genome Workbench follows a modified Model-View-Controller (MVC) archi-
tecture. The MVC paradigm provides a clean separation between the data being dealt with (the
model), the user's perception of this data (provided in views), and the user's interaction with this
data (implemented in controllers). For Genome Workbench, as with many other implementations
of the MVC architecture, view and controller are generally combined.

Central to the framework is the notion of the data being modeled. The model here encom-
passes the NCBI data model, with particular emphasis on sequences and annotations. The
Genome Workbench framework provides a central repository for all managed data, through the
static class interface in CDocManager. CDocManager owns the single instance of the C++ Object
Manager that is maintained by the application. CDocManager marshalls individual CDocument
classes to deal with data as the user requests. CDocument, at its core, wraps a CScope class
and thus provides a hook to the object manager.

The View/Controller aspect of the architecture is implemented through the abstract class
CView. Each CView class is bound to a single document. Each CView class, in turn, represents a
view of some portion of the data model or a derived object related to the document. This definition
is intentionally vague; for example, when viewing a document that represents a sequence align-
ment, a sequence in that alignment may not be contained in the document itself but it is distinctly
related to the alignment and can be presented in the context of the document. In general, the
views that use the framework will define a top-level FLTK window; however, a view could be
defined to be a CGI context such that its graphical component is a web browser.

To permit maximal extensibility, the framework delegates much of the function of creating and
presenting views and analyses to a series of plugins. In fact, most of the basic components of the
application itself are implemented as plugins. The Genome Workbench framework defines three
classes of plugins - data loaders, views, and algorithms. Technically, a plugin is simply a shared
library defining a standard entry point. These libraries are loaded on demand; the entry point
returns a list of plugin factories, which are responsible for creating the actual plugin instances.

Cross-platform graphical development presents many challenges to proper encapsulation. To
alleviate a lot of the difficulties seen with such development, we use a cross-platform GUI toolkit
(FLTK) in combination with OpenGL for graphical development.

